Navigation was difficult in the pre-radio/satellite age. Landmarks were critical – at least the ones that didn’t move. Luckily, and I didn’t know this until I visited the area a few years ago, the small entrance to (what is now-a-days called) Dingle Bay has a distinctive cleaved cliff on its western side.
Cleave Cliff Face at entrance to Dingle Bay
In the second book in The Crossover Series, “Contact,”, my characters travel to southern Ireland in the year 1076 CE (“common era,” aka AD). This broken cliff face provided a distinctive landmark for Larry and his crew when they returned on their second trip. (Which, for those who haven’t read “Contact” yet, didn’t go so well…).
Here’s an overview of Dingle and the surrounding terrain (Ros was the headman back in 1076 CE):
Dingle Bay showing the town of Dingle, the cleaved cliff, and Ros’s farmstead.
Here is a dramatic (but, unfortunately, out-of-focus) image showing the gap between the mainland and the cleaved cliff edge.
Fuzzy view of the cleaved cliff face
On our recent visit to southern Ireland, my wife and I walked from the town of Dingle (at the north end of the bay) to the entrance at the south end:
Path to entrance of Dingle Bay
The cleaved cliff is just to the right of the tower as seen from this perspective. Note: the tower was built several centuries after the time from of my book. Here’s a view with more detail:
View of entrance to Dingle Bay
It was a pleasant walk from Dingle to the bay’s entrance. Except for the land mines:
Yes, we had to clean off the bottom of our shoes…in spite of our care.
The third book in The Crossover Series, “Collapse,” has a location: the northern part of the Yucatan Peninsula. Time is about 1088 CE.
Location of “Collapse,” the third book in The Crossover Series
Isla Cerritos is the location of a trading island administered by the rulers of Chichen Itza. It is the initial contact point between the characters of the Crossover series with the Maya people.
The Maya Civilization is in decline in this century, but it’s still going strong in the north of the Yucatan. Initial contact between the characters of “Collapse” and the Maya people will occur on what is now known as Isla Cerritos, a small island off the north coast of the Yucatan.
Isla Cerritos (a post-conquest name) was a trading center connected to Chichen Itza. Archaeological excavations reveal a largely artificial island with docks, storage buildings, and a pronounced seawall.
It should be interesting developing the setting given all the data/archaeological evidence presently available!
Not available is the name given to Isla Cerritos by the Maya people back in the 11th century. Any suggestions out there?
The characters in Conflict, the first book in the Crossover Series, attempted to escape the warlord Tork by fleeing up the Susquehanna River. And decide to make a stand just north of present day Harrisburg, Pennsylvania.
Their first early defense against any attack by a pursuing Tork was a watchtower.
On the same trip as the one where I took a canoe trip down the Susquehanna, I was able to find the exact location of that tower (built by my characters back in the 11th century). And was thrilled to find that a cemetery occupies the tower’s hill in this century.
The present day location of Haven’s tower
Not thrilled about the graves, but rather that the hill was cleared of trees and provided an excellent view of what Joe and his band could see in Conflict.
Present day view from Haven’s tower.
Of course, the roads cut into the hills to the south weren’t there back in 1054 AD! For reference, here’s the map found in Conflict:
Location of the lookout tower relative to Haven
P.S. If you enjoy my books, please consider posting an honest review on the site from which you bought it. Reviews really help authors sell more books and readers discover new stories. Thank you!
In novels, the importance of location varies all over the place. Sometimes, it’s just some nondescript neighborhood. Other times, it’s a major “character” (think Middle Earth or Avatar).
Also important, location constrains and/or focuses the storyline. When looking for a setting for Conflict, the first book in the Crossover Series, I was interested in a location that could provide, at least temporarily, safety for my characters. And for their horses.
(Horses? My characters are sent back to 11th century, pre-contact North America. And take horse along with them.)
Other factors in choosing a setting would be setting up the other books in the series and to provide at least some food.
So my constraints in location are:
1. Safety
2. Control the horses
3. Provide later ease in travel (setting up the subsequent books)
4. Food supply (fish)
So I searched using Google Earth.
I started out up near the Great Lakes, looking for terrain that had valleys, yet was close enough to navigable waterways. Really didn’t find anything.
Somehow, and I can’t remember how, I started looking at coastal waterways. And I found myself “traveling” up the Susquehanna River. When I saw the following image, I knew I found a home for my characters:
Haven’s Geological Ridges from Google Earth
It has it all:
1. Defensive hills (actually, they’re geological folds)
2. A valley to hold the horses (actually, two valleys, one for each stallion)
3. A route (with a few rapids) to the ocean
4. Fish!
And the Susquehanna is convenient, as my niece lives nearby. So, I visited and took a canoe trip down the river:
View of Geological Ridges from shore where we stopped for lunch
Notice the hills. They’re really the ends of those geological folds. I have no idea of how the Susquehanna cut through them…but I wouldn’t have wanted to be around when it did!
Navigating the rocks in the Susquehanna River
Very Shallow. Here’s my wife and niece (you may have to squint to see them) navigating through the broken bones of the geological folds that still remain in the river.
And that’s how the Susquehanna became the setting for my first book.
* * *
The first book in the Crossover Series, Conflict, remains free as an eBook at:
Amazon
Kobo
Nook
The second book, Contact, will be out on July 16th!
To stay updated, sign up for my newsletter at www.waltsocha.com
Any questions, thoughts, or comments? Contact me at walt@waltsocha.com
So many things are taken for granted in our consumer society. If you need something, simply buy a product (or app) for that.
So what about glue?
I was making a prop for my book’s cover and found myself needing an adhesive. The prop? A obsidian studded war club (see the first chapter of my forthcoming novel).
The club is a scrap 4×4. The obsidian I had laying around (from my knapping days). But how to attach the obsidian to/into the wood? I could go to the hardware store. Or I could do it the (real) old-fashion way.
I looked up my Primitive Skills notes from an Earthwalk Northwest class I took (a long time ago in a world far, far away). Here’s the recipe/process:
Take tree sap…some nice sticky sap from an evergreen.
Powder up so charcoal…found in our fireplace.
Mix together…maybe 4 parts sap to 3 parts powdered charcoal.
Heat (here I cheated…heated in a old cat food can on a backpacking stove…my wife wouldn’t let me do so on our kitchen stove).
Once heated, a coated the two pieces you want to join and press together.
Note: it’s heat sensitive…to “disassemble,” just heat.
Here’s some images:
Making the club (I cheated…used a viking type ax):
Carving a club
Chiseling the slot (cheated again):
Carving slots for the obsidian flakes
Preparing the sap and charcoal:
Preparing the sap and the charcoal
Gluing the obsidian edge into the club:
Gluing the obsidian chips into the slots
Finished product:
Obsidian studded club
So are you ready to make a batch of glue while lost in the wilderness?
To determine position on the open seas, one need to measure the Latitude (north and south) and Longitude (degrees east and west). But longitude is a more difficult task.
Quick review:
Latitude: how far north or south, referenced to the equator (halfway between the north and south poles).
Longitude: how far east or west from some agreed upon position (now-a-days pinned to the Royal Observatory in Greenwich, England).
While it is possible to determine the longitude by observing the stars (or even the moons of Jupiter), these measurement require a degree of accuracy impossible on the rolling deck of a ship at sea.
A solution to this problem is the use of accurate timepieces.
…Two observers note the time when the sun reaches its highest point in the sky
…The difference in time is directly related to the angle between the two observers on the surface of the earth
…24 hours = 360 degrees
…Each hour of difference = 15 degrees
…The angle between the position of the two observers can be use to determine distance
…Each degree = (circumference of the earth)/(360 degrees) = 69.2 miles where the circumference = 24900 miles.
…Using Nautical miles, each degree = (21639 nautical miles)/(360 degrees) = 60 nautical miles
…So that each minute of angle (60 minutes to a degree) = 1 nautical mile
…So for each hour of difference between the two observers, they are 60 nautical miles apart (or 69.2 land miles).
Easy. Right? Well, it’s only easy if the two observers are using clocks that have been synchronized and keep accurate time.
Today, any pair of inexpensive wristwatches would suffice. However, not until the eighteenth century, could such accurate clocks be constructed.
John Harrison’s first chronometer
Prior to the 18th Century, navigators could determine latitude (distance north or south) but could only guess their east-west position by dead reckoning (estimating the speed of their ship, estimate of the direction of travel, and estimating their time duration). Hence the name “dead” reckoning.
In my time-travel, alternative history novels, common wristwatches become a highly valued navigational aid. (In your story, make sure they run on internal springs and not batteries!).
The tale of John Harrison’s construction of an accurate chronometer in the 18th Century is well told in “Longitude” by Dava Sobel.
To determine distances position north and south, one needs three things: a tool to measure the angle between the horizon and the max altitude of the sun, the date, and charts with the latitude as a function of the sun’s maximum altitude.
The measurement tool can be as simple as an outstretched hand or as complicated as a sextant. From Wikipedia (https://en.wikipedia.org/wiki/Celestial_navigation): Accurate angle measurement evolved over the years. One simple method is to hold the hand above the horizon with your arm stretched out. The width of the little finger is an angle just over 1.5 degrees elevation at extended arms length and can be used to estimate the elevation of the sun from the horizon plane and therefore estimate the time till sunset.
The need for more accurate measurements led to the development of a number of increasingly accurate instruments, including the kamal, astrolabe, octant and sextant. The sextant and octant are most accurate because they measure angles from the horizon, eliminating errors caused by the placement of an instrument’s pointers, and because their dual mirror system cancels relative motions of the instrument, showing a steady view of the object and horizon.
The charts (using the same calendar) must be generated by hand using pre-determined latitude positions. For example, using Reykjavik (Iceland) which is located at 64 degrees North, one can generate the following data (by taking measurements throughout the year):
Latitude (degrees)
date
Max Sun Altitude
64
January 1st
3.2
64
February 1st
9.92
64
March 1st
18.8
64
April 1st
30.9
64
May 1st
41.3
64
June 1st
48.2
64
July 1st
49.1
64
August 1st
43.8
64
September 1st
34.0
64
October 1st
22.6
64
November 1st
11.4
64
December 1st
4.3
To complete the chart, one needs more dates (which I have avoided here for simplicity) and the angles at different Latitudes (here I just added three, again for simplicity) to obtain:
Date
Max Sun Altitude at
Latitude = 44 degrees
Max Sun Altitude at
Latitude = 54 degrees
Max Sun Altitude at
Latitude = 64 degrees
January 1st
23.9
13.1
3.2
February 1st
28.9
18.9
8.9
March 1st
38.8
28.8
18.8
April 1st
50.9
40.9
30.9
May 1st
61.3
51.3
41.3
June 1st
68.2
58.2
48.2
July 1st
69.0
59.1
49.1
August 1st
63.8
53.8
43.8
September 1st
54.0
44.0
34.0
October 1st
42.5
13.1
3.2
November 1st
31.3
21.4
11.4
December 1st
24.1
14.1
4.3
Obviously, more intermediate dates and latitudes are necessary. These would fill a very large atlas (think of the number of data points for 365 days and 180 degrees!).
So, if you are sailing in a Viking ship (as my characters do in my second book which will be published in late 2016), you need to monitor the altitude of the sun above the horizon. Take several readings during the noon hours, chose the largest value and check that value in your atlas. If the maximum value is 49 degrees and the date is August 15th, the latitude is approximately 58.8 degrees from the above table. If you are sailing to Reykjavik, you better turn North a bit as the latitude of Reykjavik is 64 degrees.
How far east and west are you? I’ll cover longitude in my next post.
Whether writing historic or alternative history fiction (or even when world-building in a fantasy or Sci-Fi genre), it is often necessary to describe society’s political and social structure. This is so in my second novel, which takes place in 11th century Ireland.
Prior to the 19th (or so) century, Kings seem to be the prevalent governing structure. Being totally immersed in our established democracy and firmly accepting that all are created equal, I wondered by people put up with any type of aristocracy.
The book “Slaves and Warriors in Medieval Britain and Ireland, 800 to 1200” by David Wyatt shed quite a bit of light on the formation of medieval societies and let to my eventual acceptance and, perhaps, support of the historic necessity of Kings.
I read Dr. Wyatt’s book while researching the “institution” of slavery. Note: I used the inter-library loan system at my local library as the book is out of print and used copies run approximately $200 on Amazon.
The book does a great job of describing emerging societies. My take-away is as follows:
Early societies were violent. Anyone without a personal connection is a target for theft, slavery or rape. People banded together for protection. One leader would emerge and trade his protection for the loyalty of followers. There was no sense of Nation.
Anyone outside this leader-follower structure is a target. Only within the leader-controlled areas do neighbors (typically) not kill each other.
As the “leader” extended his/her influence, this area of protection increases.
When a leader controls enough territory, he calls himself a King and the territory becomes a Nation, resulting in an even larger pool of inhabitants that become non-targets to each other.
Unfortunately, with more than one King in the world, King/Nation to King/Nation violence started and spread, a notable example being the centuries long spat between the English and the French Monarchs. At least until Kings were supplemented by democracies.
Another serious downside is that intermediate social levels such as lords, knights, clerics and other privileged classes are formed. While they helped enforce peace at the local level, violence between classes (top down) still existed.
So, while Kings are not in favor in the modern world (except ceremonially), they served a vital function in the past to reduce overall violence and to generate a sense of Nation as societies evolved.
Note: I accept that this post is a bit simplistic. Problems did persist; one being when, for political reasons, specific minorities were persecuted by the King. Another is the heavy burden of taxation on the lower classes (to support the upper classes).
I’m guessing that the three most important health improvements in a modern (or emerging) society are water, sewers, and soap:
Clean water: without it we die.
Sewers: if we live in a city, sewers are necessary to get rid of human (and animal) waste and pathogens as well as helping eliminate food sources for disease-carrying rodents.
Soap: the chemistry is a bit difficult but the actual process to make a basic soap product is straightforward.
Clean water and good sewers are fairly straightforward, although expensive in a community larger than a few people. But soap can easily be made, the most difficult part being a cooking vessel (think iron, ceramic or even hot rocks in a hollowed out log).
There are three steps in making soap:
Collect wood ash and use to make lye.
Collect fat and render it into tallow (cows or deer) or lard (pig).
Combining the tallow/lard and lye over heat to make a soft soap.
Lye
Wood ash is the powdery reside left in the fireplace. The best ash ashes are from hard woods.
The ashes are soaked in chemical-free water (rainwater). The water flushes out the potassium (one of the elements found in the wood ash). The resulting liquid is caustic, specifically potassium hydroxide.
The soaking is considered done (strong enough) when the liquid is dense enough to float an egg. Note: dispose of the egg.
If not strong enough, the liquid will need to be boiled down to increase the density.
Rendering Fat
Add fat chunks from butchering to a heavy pot with water. The water is just to prevent burning and to help float the tallow/lard. Boil a low temperature (barely bubbling) for an hour or so. The tallow/lard will float on the water (any lighter than water impurities may need to be skimmed off).
Allow to cool. Then remove the white silky tallow/lard from the surface. You may need to scrape off any residue on the bottom surface of the tallow/lard.
Making Soap
Place the lye in a non-reactive pot (lye will dissolve an aluminum pot). Heat until it simmers.
Slowly add melted tallow/lard to the lye pot.
Heat at a simmer for several hours. Stir. Remove heat briefly if the pot starts to foam over.
At first, you’ll get an oily foam on top. After an hour or so, the liquid will thicken. Keep stirring.
Once homogeneous, remove from heat and allow to cool.
Now wash up! You now have a soft soap. (Hard soaps require Sodium Hydroxide, soft are made from Potassium Hydroxide which is in the wood ashes).
In chemistry, salts are ionic compounds that result from the neutralization reaction of an acid and a base. They are composed of related numbers of cations (positively charged ions) and anions (negative ions) so that the product is electrically neutral (without a net charge). These component ions can be inorganic, such as chloride (Cl−), or organic, such as acetate (C2H3O2−); and can be monatomic, such as fluoride (F−), or polyatomic, such as sulfate (SO42−).
There are several varieties of salts. Salts that hydrolyze to produce hydroxide ions when dissolved in water are basic salts, whilst those that hydrolyze to produce hydronium ions in water are acidic salts. Neutral salts are those that are neither acid nor basic salts. Zwitterions contain an anionic centre and a cationic centre in the same molecule, but are not considered to be salts. Examples include amino acids, many metabolites, peptides, and proteins.
Potash is any of various mined and manufactured salts that contain potassium in water-soluble form. The name derives from “pot ash”, which refers to plant ashes soaked in water in a pot, the primary means of manufacturing the product before the industrial era. The word “potassium” is derived from potash.
Writing a novel set in the 11th century will necessarily involve describing the clothing of my various characters. I started out just describing a linen tunic covered by wool outerwear. And avoiding any description of pants, cloth weave or shoes.
My minimal linen and wool description was adequate. But this article will enable me to expand my description.
The following (including images) are from William R. Short’s article:
Tunic:
Usually made of wool. Looks like a long pullover with excess material at the armpits for movement.
Tunic
Undertunic:
Usually made of linen (for comfort). General shape of the Tunic.
Trousers:
Could be baggy or tight with no pockets or fly. So the men had to hike up their tunic and drop their drawers to relieve themselves.
Note: in “The Tudor Monastery Farm” (http://goo.gl/CWn3Tb), trousers may have had an opening (or flap) in the front that was laced up (thus making it easier to relieve oneself).
Trousers had no pockets. Hence one carried their odds and ends in pouches or just hanging from belts.
Socks:
Make of wool and probably only worn by the more wealthy.
Boots:
Made from leather using the turnshoe technique (made inside out to facilitate sewing the thinner uppers to the thicker sole. This puts the stitching on the inside of the shoe. Laces or toggles were used to secure the shoe.
Cloaks:
Rectangular in shape and worn so that the sword arm was free.
What does a well dressed northern European look like?